
An Efficient Local Search Heuristic with Row Weighting

for the Unicost Set Covering Problem

Chao Gaoa, Xin Yaoa,b, Thomas Weisea, Jinlong Lia,∗

aUSTC-Birmingham Joint Research Institute in Intelligent Computation and Its
Applications (UBRI), School of Computer Science and Technology, University of Science

and Technology of China, Hefei 230026, China.
bThe Centre of Excellence for Research in Computational Intelligence and Applications

(CERCIA), School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.

Abstract

The Set Covering Problem (SCP) is an NP-hard optimization task encoun-
tered in many applications. We propose a new Row Weighting Local Search
(RWLS) algorithm for solving the unicost variant of the SCP, i.e., USCPs
where all costs of all sets are identical. RWLS is a hybrid algorithm that has
three major components united in its local search framework: (1) a weight-
ing scheme, which updates the weights of uncovered elements used to prevent
convergence to local optima, (2) tabu strategies to avoid possible cycles dur-
ing the search, and (3) a timestamp method to break ties when prioritizing
sets. RWLS is evaluated on a large number of problem instances from the
OR-Library and compared to other approaches. It is able to find all the best
known solutions (BKS) and improves 14 of them, although requiring a higher
computational effort on several instances. RWLS is especially effective on the
combinatorial OR-Library instances and can improve the best known solu-
tion of the hardest instance CYC11 considerably. It is conceptually simple
and has no instance-dependent parameters, which makes it a practical and
easy-to-use USCP solver.

Keywords: Combinatorial Optimization; Unicost Set Covering Problem;
Row Weighting Local Search; Hybrid Algorithms

∗Corresponding author. Tel: +8618019557504
Email addresses: chao.gao.ustc@gmail.com (Chao Gao), x.yao@cs.bham.ac.uk

(Xin Yao), tweise@ustc.edu.cn (Thomas Weise), jlli@ustc.edu.cn (Jinlong Li)

Preprint submitted to European Journal of Operational Research June 14, 2014

1. Introduction

The Set Covering Problem (SCP) is a combinatorial optimization problem
with many applications, ranging from crew scheduling in railway and mass-
transit companies to job assignment in manufacturing and service location [1,
2]. It can be described as follows: We are given a set of elements X, a set
S of subsets s with s ⊆ X, ∀s ∈ S and

⋃
s∈S s = X, each subset in S

is associated with a cost, the goal is to find a set F ⊆ S whose union is
X (which contains all elements from X) at the minimal total cost. If each
set s has the same cost, the problem is referred to the unicost set covering
problem (USCP). Although being a special case of SCP, the unicost version
is generally considered to be harder to solve [3] and is the subject of this
paper.

Formally, an SCP instance is usually defined as a m× n zero-one matrix
A = {aij}m×n where aij = 1 means column (set) j can cover row (element)
i. The objective is to find a set of columns at the minimal cost to cover all
the rows. If the problem is a USCP, the objective can also be viewed as to
find the smallest set of columns to cover all the rows. A candidate solution
C can then be represented as a subset of N = {1, . . . , n}. Such a solution is
feasible if and only if

∑
j∈C aij ≥ 1, ∀i ∈ M with M = {1, . . . ,m} and the

objective function subject to minimization is |C|.
In this paper, we propose the stochastic Row Weighting Local Search

(RWLS) algorithm for solving USCPs. RWLS uses two search operators to
perturb the candidate solution and hybridizes three major existing strategies
into its local search procedure:

(1) A weighting scheme, which updates the weights of the uncovered rows,
is applied in order to escape local optima.

(2) Different tabu strategies, which prevent possible cycles during the search.

(3) A timestamp method to break ties, which makes the sets that are not
moved for longer time are preferred to be selected.

In our experiments, RWLS has improved 14 best known solutions in the
literature for 87 USCP instances from the OR-Library [4] and shown excellent
performance. It is especially effective on the problems in which the number of
rows (elements) is much larger than the number of columns (sets). However,
RWLS is also effective in other cases as well, for example, for the seven railway
crew scheduling problems, with up to millions of columns and thousands of
rows. Incorporated with problem size reduction, it outperforms CPLEX12.5
consistently and succeeds in finding good solutions to all seven instances
when CPLEX12.5 failed on four larger instances. Overall, RWLS is simple,
efficient, and only needs a single parameter to indicate the stopping criterion.

2

The rest of this paper is organized as follows. We first discuss related work
in Section 2 and then give a detailed description of RWLS in Section 3. The
experimental studies are presented in Section 4 and compared with several
approaches from the related work. Conclusions and future work are finally
given in Section 5.

2. Related Work

The SCP is NP-hard in the strong sense [5]. Many algorithms have been
developed for solving the SCP in the past years. Exact approaches [6, 7, 8, 9]
are mostly based on branch-and-bound or branch-and-cut. Caprara et al. [10]
compared different exact algorithms and found that the best exact approach
is CPLEX. However, although exact algorithms can guarantee the optimality
of the found solutions, they usually require substantial computational efforts
when facing large scale problems.

Therefore, large instances of SCP are typically tackled by heuristic algo-
rithms. The simplest approximation algorithm for SCPs is the greedy algo-
rithm [11]. It has been proven to have an approximation ratio of ln(k′) + 1,
where k′ is the size of the optimum solution. Later, several randomized
greedy algorithms [12, 13] are proposed. They usually produce better re-
sults than the pure greedy one. A variety of other heuristic algorithms have
also been proposed, including some general meta-heuristics, such as Genetic
Algorithms [14], Simulated Annealing [15] and Lagrangian Relaxation-based
heuristics [16, 17, 18, 19], among which the heuristic methods by Ceria et
al [17], Caprara et al. [18] and Yagiura et al. [19] are able to achieve re-
markable results on the very large-scale instances by exploiting their specific
features. We highlight the 3-flip neighborhood local search (3FNLS) method
by Yagirua et al. [19], for it successfully combines 3-flip local search, adaptive
penalty weights control techniques and Lagrangian Relaxation, and has the
best performance on the very large-scale railway crew scheduling problems.
For a good survey of relaxation-based heuristics for the SCP, see [20].

Lan et al. [21] noticed that the cost information plays an important role
in the Genetic algorithm [14], Simulated Annealing [15] and the Lagrangian-
based heuristic [16], which makes them being not recommended for USCPs.
They therefore proposed the Meta-RaPS approach that works effectively both
for unicost and non-unicost SCPs. Recently, Yelbay et al. also gave a detailed
explanation of the usefulness and limitations of the dual information from
Lagrangian Relaxation or Linear Programming (LP) Relaxation and they
further pointed out that the unicost problems may be more challenging than
the non-unicost problems [3].

3

There are heuristics dedicated to specifically solving USCPs. Grossman
and Wool [22] compared nine heuristics, including several greedy variants
and a neural network algorithm designed by the authors. In their report, the
randomized greedy variant R-Gr has the best performance on an extensive
set of instances from the OR-Library [4]. A newer GRASP algorithm in-
corporating a local improvement procedure from (Satisfiability) SAT solving
has shown better results than R-Gr [23].

The Electromagnetism Meta-heuristic (EM) proposed by Naji-Azimi et
al. [24] creates the initial population by generating a pool of solutions, and
then a fixed number of local search and movement iterations are applied
based on the “electromagnetism” theory. In order to further escape from
the local optima, mutation is also adopted. The computational results show
that EM performs much better than GRASP, but in comparison with Meta-
RaPS for the combinatorial problem set, for 3 instances the solution qualities
obtained by EM are inferior.

Stochastic local search is a popular approach for solving hard combina-
torial problems [25]. Musliu [26] proposed a local search algorithm for the
USCP using a simple fitness function, which is the number of uncovered
elements plus the cardinality of the candidate solution. New candidate so-
lutions are created by adding and removing sets from the current one. To
avoid cycles during the local improvement phase, a tabu mechanism is used.
According to our investigation, Musliu’s algorithm is able to find the best
known solutions on 80 instances from the OR-Library [4] as unicost problems
and 5 instances from Steiner triple systems [27].

The weighting approach has been adopted in several heuristics for differ-
ent problems, such as clause weighting in SAT [28, 29, 30, 31]. Our algorithm
is the first pure stochastic local search heuristic dedicated for the USCP. Be-
cause in USCP all sets have the same cost, the task can also be seen as to
minimize the number of sets in a solution. RWLS utilizes this property of
USCP, and uses a general search framework to iteratively reduce the size of
the candidate solution.

3. Row Weighting Local Search

3.1. Notations and Definitions

Before presenting our algorithm in detail, we give some necessary nota-
tions and definitions. As mentioned, the USCP can be presented as a m× n
zero-one matrix. M and N indicates the set of rows and columns, respec-
tively. We define Ji, the set of columns which are able to cover row i, and

4

Ij, the set of rows covered by column j, as follows:

Ji = {j ∈ N |aij = 1} i = 1, . . . ,m, (1)

Ij = {i ∈M |aij = 1} j = 1, . . . , n. (2)

A candidate solution C is noted as a subset of columns: C ⊆ N . For all
i in M , we say that row i is covered if and only if there exists a j in C that
satisfies i ∈ Ij.

For all j inN , an attribute denoted j.score, which is later used to prioritize
the columns for covering, is defined and calculated according to Equation (3).

j.score =

∑
i∈Ij

σ(C,i)=0

i.weight if j 6∈ C

−
∑
i∈Ij

σ(C,i)=1

i.weight if j ∈ C
(3)

In Equation (3), i.weight is the weight of row i and σ(C, i) = C∩Ji represents
the number of columns in C covering row i. When a column j 6∈ C, j.score
is the sum of all the weights of rows that j is able to cover and are still not
covered by C. If a column j ∈ C, j.score is the negation of the sum of the
weights of rows which are only covered by j in C. It can be seen that, if we
move j into or out of C, the score of j is negated.

Each column has a timestamp associated with it, which gets updated
whenever it is moved in or out. It is used to break ties when more than two
columns have the same score.

We also define relations of columns. For all j1, j2 in N , and j1 6= j2, if
∃i ∈ M, i ∈ Ij1 ∩ Ij2 , we call j1 and j2 neighbors. The notation neighbor(j)
contains all the neighbors of j, defined as

neighbor(j) = {d ∈ N |d 6= j ∧ Id ∩ Ij 6= ∅}, j = 1, . . . , n (4)

Each column has a Boolean attribute named canAddToSolution, which is
used to implement one of the two tabu strategies in RWLS. A column j can
only be added to C if j.canAddToSolutin is true. The set of uncovered rows
are maintained in a variable L in RWLS.

3.2. The RWLS Algorithm

RWLS is a USCP solver. It tries to find the smallest set of columns that
covers all the rows in M . For this purpose, we adopt a two phase search
procedure. In the first phase, an initial solution C is constructed in a greedy
manner. Then, a local search improvement is conducted with the weighting
scheme. The overall procedure of RWLS is described as Algorithm 1.

5

A preprocessing step is necessary when there are rows which are only cov-
ered by one column. Such columns must be selected into the solution and the
rows they cover can be removed from the problem. After reading the prob-
lem instance, we examine the number of columns covering each row, and for
rows that are only covered by one single column, the corresponding column
is marked not to be removed from the candidate solution permanently. This
can be done with a time complexity at most O(m). If every row is covered
by two or more columns in the problem, preprocessing is unnecessary.

Algorithm 1 The RWLS algorithm
1: function RWLS()
2: read problem instance
3: set stopping criteria
4: preprocessing if necessary
5: init()
6: localsearch()
7: end function

3.2.1. Initialization

Algorithm 2 describes the initialization phase, which builds two sets C
and L, representing the initial solution and the set of uncovered rows, re-
spectively. Every row is initialized to have a weight of 1 and each column
j has a canAddToSolution of true, a timestamp of 1 and a score computed
according to Equation (3), i.e., the number |Ij| of rows it can cover. C is
then constructed greedily in a loop until L becomes empty. It is then used
as the candidate solution in the subsequent local improvement phase.

The ADD(j) is a simple operator, in which the scores of j and neighbor(j)
are updated accordingly, and the canAddSolutions of neighbor(j) are set to
true. After calling ADD(j), j is moved to C, and the newly covered rows
are removed from L.

3.2.2. Local Search

Let the size of the initial solution C be k = |C|. If there is any better
solution, it must have a size less than k. If we always maintain k as the
size of the best solution we have encountered so far, then the local search
improvement can also be regarded as to solve a series of new problems: given
the original problem and an integer number k, find a k−1 size solution which
is able to cover all the rows in M .

Therefore, we take the initial solution C as the candidate solution into the
local search improvement phase defined as Algorithm 3. Here, the REMOVE
function is first called, which removes a column from C. C then becomes a

6

Algorithm 2 Initialization
1: function init(C candidate solution)
2: for j ∈ N do
3: j.score← 0
4: j.timestamp← 1
5: j.canAddToSolution← true
6: end for
7: L← ∅
8: for i ∈M do
9: i.weight← 1
10: add i into L
11: for d ∈ Ji do
12: d.score← d.score+ i.weight
13: end for
14: end for
15: C ← ∅
16: while L 6= ∅ do
17: j ← rand({d ∈ N\C ∧ d.score = max{d1.score|d1 ∈ N\C}})
18: remove newly covered rows from L
19: add(j)
20: end while
21: end function

partial solution with k−1 columns. However C may have redundant columns,
and if one of such columns is removed, we get an even better solution and
the stored best solution and the variable k will be updated. We continue
to remove columns until C becomes a partial solution which cannot cover
all rows in M . As a partial solution of size k − 1 has been obtained, a pair
of operations (ADD and REMOVE) are used to perturb C. The weighting
scheme is also applied, which means that the weights of uncovered rows are
increased. The weighing scheme improves the chance of uncovered rows being
covered in the following iteration for the “hard-to-cover” rows.

As described in Algorithm 3, in each iteration, C becomes a partial so-
lution of size k − 1. The REMOVE operator deletes the columns with the
highest negative score in C. RWLS keeps track of two previously added
columns in the tabu list, i.e., a FIFO queue of size two, to prevent them
from being removed again immediately. We found that even with a tabu list
length of one, good results can be achieved, but with length two the algo-
rithm tends to proceed faster. After the removal, a row is randomly selected
from the uncovered row set L and the column with the highest score and
canAddToSolution = true is chosen to be added to C. The REMOV E(j)
operator is symmetry with ADD(j), in which the scores of j and neighbor(j)
are updated accordingly, and j.canAddToSolution is set to false, whereas its
neighbors’ canAddToSolution are updated to true.

The restriction canAddToSolution = true in Line 13 is the second tabu
strategy applied in RWLS. Generally, we do not want the column which has
been removed from C to be added back again if none of its neighbors’ states

7

Algorithm 3 Local search improvement
1: function localsearch()
2: while stop criteria not satisfied do
3: while L = ∅ do
4: update the best solution
5: select j ∈ C with the highest score
6: remove(j)
7: add newly uncovered rows to L
8: end while
9: select j ∈ C ∧ j 6∈ tabu list with highest score and oldest on tie
10: remove(j)
11: add newly uncovered rows to L
12: r ← rand(L)
13: select d ∈ {d1 ∈ Jr|d1.canAddToSolution = true} with the highest score and oldest on tie
14: add(d)
15: remove newly covered rows from L
16: for i ∈ L do
17: i.weight← i.weight + 1
18: end for
19: put d to tabu list
20: j.timestamp← step
21: d.timestamp← step
22: step← step+ 1
23: end while
24: end function

has changed since its removal. We set j.canAddToSolution = false if j leaves
C, which means j is not eligible to be added to C. If one of the states of the
neighbors of j changes (due to their removal or addition), j.canAddToSolution
is changed to true. To save computing time, we implement this strategy along
with the operators ADD and REMOVE.

Finally, the timestamp used in Algorithm 3 makes sure that columns that
have not been selected for a longer time are preferred; i.e., when two more
columns have the same score, we break ties by preferring the oldest one with
the smaller timestamp.

The viability of Line 13 in Algorithm 3 is guaranteed by observation, as
bellow:

Lemma 3.1. ∀i ∈ L, |{j ∈ Ji|j.canAddToSolution = true}| ≥ 1.

Proof: Before the proof, we reassert that after necessary preprocessing, the
remaining rows are covered by two or more columns. Then we consider the
following two circumstances.

(a) Initially, all the columns have canAddToSolution = true, and then an
initial solution is constructed. At this time, no columns have left C and no
column has a false value for canAddToSolution. Thus, the proposition holds.

(b) In the period of local search, when a column j leaves C, then we set
j.canAddToSolution = false, and ∀j′ ∈ neighbor(j), j′.canAddToSolution =
true. Let’s assume that the removal of j causes some row r ∈ Ij to become

8

uncovered, because Jr ∩neighbor(j) 6= ∅. Then, there is at least one columns
in Jr whose canAddToSolution = true and, thus, the proposition holds.

3.3. The Row Weighting Scheme in RWLS

The row weighting scheme plays an important role in our algorithm. In
RWLS, each row is associated with a weight, which is represented by a pos-
itive integer number. Initially, all the rows are given a weight of 1. During
the local search improvement phrase, whenever the candidate solution C be-
comes a partial solution in each iteration, the weight scheme is applied, which
means the weights of uncovered rows are increased. In RWLS, the simplest
additive increasing method is adopted, which means the weights are simply
increased by 1.

Whenever a partial solution with k−1 columns has been obtained, RWLS
repeatedly perturbs the candidate solution. Since the columns in C are
changing dynamically, the uncovered rows in L also change. Because of
the weight increasing scheme, the “hard to cover” rows, which have bigger
weights, may have good chance to be covered in the following iterations.
Both the perturbation and increasing weights help RWLS to escape from
potential local optima.

3.4. Analysis of the ADD and REMOVE Operators

As shown in Algorithm 3, the operators ADD and REMOVE are crucial
to RWLS. Therefore, it is necessary to precisely specify them, which is done
in Algorithms 4 and 5.

Algorithm 4 Add a column into C
1: function add(j)
2: add j to C
3: j.score← −j.score
4: for d ∈ neighbor(j) do
5: d.canAddToSolution← true
6: for r ∈ Id ∩ Ij do
7: if |Jr ∩ C| = 1 then
8: cover r
9: d.score← d.score− r.weight
10: else if |Jr ∩ C| = 2 then
11: if d ∈ C then
12: d.score← d.score+ r.weight
13: end if
14: end if
15: end for
16: end for
17: end function

When column j is added or removed, the scores of j and its neighbors
are calculated according to Equation (3) and Equation (4), respectively, the

9

Algorithm 5 Remove a column from C
1: function remove(j)
2: remove j from C
3: j.score← −j.score
4: j.canAddToSolution← false
5: for d ∈ neighbor(j) do
6: d.canAddToSolution← true
7: for r ∈ Id ∩ Ij do
8: if |Jr ∩ C| = 1 then
9: d.score← d.score− r.weight
10: else if |Jr ∩ C| = 0 then
11: uncover r
12: d.score← d.score+ r.weight
13: end if
14: end for
15: end for
16: end function

canAddToSolution of neighbor(j) are updated to true. Only when j is re-
moved, j.canAddToSolution is set to false. The time complexity of these two
operators is dependent on the size of neighbor(j). To further analyze it, we
define variables p, q and t. For all d in neighbor(j), let γ(j, d) be the set of
rows that they both can cover.

γ(j, d) = Id ∩ Ij (5)

q = max{|γ(j, d)||d ∈ neighbor(j)} (6)

Therefore, if column j is added or removed, the time complexity of the two
operators is O(|neighbor(j)| × q). More generally, if we define

t = max{|Jr||r ∈M} (7)

p = max{|Ij||j ∈ N} (8)

where ∀j ∈ N, |neighbor(j)| ≤ t, and ∀d, j ∈ N, |γ(j, d)| ≤ p, we can conclude
that the time complexity of these two operators will not exceed O(tp). Thus,
the two operators used to perturb C are efficient when the product of t and
p is relatively small, which is often the case.

4. Computational Results

In order to demonstrate the effectiveness of RWLS, we test it on instances
from the OR-Library [4] as well as instances from the Steiner Triple Systems
(STS) [27]. There are 87 SCP instances from the OR-Library, in which 70 of
them are randomly generated, 7 are very large-scale instances arising from
crew-scheduling at Italian railways. The remaining 10 are unicost instances
from two combinatorial mathematical models. Similar to what is done in

10

other works on the USCP [22, 23, 24, 26], we convert the non-unicost in-
stances into USCPs by ignoring the cost information.

For the purpose of fully investigate the performance of RWLS, different
stopping criteria are used in our experiments. A maximum number of search
steps is adopted at first to show the very best solutions RWLS is able to
obtain. When comparing to other algorithms, we resort to the same time
limits for the termination of RWLS, thus the comparison can be as fair as
possible.

4.1. The Problem Instances

Table 1: Details of the random problem sets [32, 6, 16], the
combinatorial problems [22] and the STS instances

Set m n Density(%)
Max number of
1s per row

Num of
Instances

4 200 1000 2 36 10
5 200 2000 2 60 10
6 200 1000 5 71 5
A 300 3000 2 81 5
B 300 3000 5 192 5
C 400 4000 2 105 5
D 400 4000 5 244 5
E 50 500 20 124 5

NRE 500 5000 10 561 5
NRF 500 5000 20 1086 5
NRG 1000 10000 2 258 5
NRH 1000 10000 5 580 5

CYC06 240 192 2.1 4–4 1
CYC07 672 448 0.9 4–4 1
CYC08 1792 1024 0.4 4–4 1
CYC09 4608 2304 0.2 4–4 1
CYC10 11520 5120 0.08 4–4 1
CYC11 28160 11264 0.02 4–4 1
CLR10 511 210 12.3 10–126 1
CLR11 1023 330 12.4 20–210 1
CLR12 2047 495 12.5 30–330 1
CLR13 4095 715 12.5 50–495 1
STS243 9801 243 1.2 3–3 1
STS405 27270 405 0.7 3–3 1
STS729 88452 729 0.4 3–3 1
STS1215 245835 1215 0.2 3–3 1
+ m and n refer to the number of rows and columns, respectively.
+ Density is the number of non-zero entries in the matrix.

Table 1 contains the details of the 70 random instances, divided into
12 problem sets (4 to NRH) with the number of rows ranging from 50 to
1000 and the number of columns spanning from 1000 to 10000. Each set of
instances is generated according to a specific density, i.e., a percentage of
non-zero entries in the (sparse) matrix. Sets 4 to 6 are from [32], A to E are
from [6], and NRE to NRH are from [16].

As non-unicost SCPs, the 45 random instances from 4 to 6 and A to D are
relatively easy to solve and their optima are known. The mixed integer linear

11

programming tool CPLEX can solve them in reasonable time [10]. However,
no optima are known for the instances that are converted to USCPs. The
instances from set E are randomly generated USCPs and their optima can
be easily obtained by a greedy procedure [22].

Table 1 also contains the ten combinatorial problem instances (CYC and
CLR). The only instance whose optimum is known is CYC06. One obvious
feature of the CYC instances is that each row is exactly covered by 4 columns.
Different from the random instances, m is always larger than n. For a detailed
explanation of the CLR and CYC problems, see [22].

The STS instances are unicost problems have regular structures, such as
|Ji| = 3,∀i ∈ M and |Ij1 ∩ Ij2| = 1,∀j1 6= j2 ∈ N . They are generally re-
garded very difficult for the previous algorithms [19]. The perl script used to
generate larger size instance STS1215 can be found in the website 1. Similar
with the combinatorial problems, the STS problems also have much larger
m than n.

For the 7 railway crew scheduling instances, because of their very large
sizes, we take them seperately in Section 4.4.

4.2. Experimental Results

Our algorithm is programmed in C, compiled with gcc with -O2 optimiza-
tion, running on a machine with Intel(R) Core(TM) i5 650 3.20GHz CPU
and 4 GB RAM under a 64-bit Linux system. The maximum number of
search steps for the random instances is set to 3× 107, and to 1× 108 at first
to show the best solutions that RWLS is able to achieve, and then we give
direct comparisons with the most effective heuristics found in the literature.

4.2.1. Comparison of Best Solutions Found by Different Algorithms

Table 2 contains the best solutions found by GRASP [23], EM [24], the
local search algorithm by Musliu [26] and RWLS on the random instances.
For convenience, in the rest of this paper, we will refer to the local search
algorithm by Musliu [26] as Musliu’s algorithm. The best known solution
(BKS) for each instance is also included in the table and we highlight those
that are updated by RWLS in boldface and a trailing asterisk. We can see
that the best solutions of EM are generally better than those of GRASP
and the EM has found the BKS of NRE1, which is 16, whereas Musliu’s
algorithm has achieved the remaining BKSs on these instances. However,
when comparing with RWLS, it is easy to see that the RWLS has surpassed
Musliu, since it has discovered all the BKSs and updated 12 of them.

1http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/scp/stcp

12

Table 3 contains the best solutions found by GRASP [23], EM [24], Meta-
RaPS [21], Musliu [26], 3FNLS and RWLS on combinatorial and STS in-
stances. Because 3FNLS were not tested on the combinatorial problems, the
best results obtained by 3FNLS on the CLR and CYC problems are unknown
in literature. Similarly, the best solutions of GRASP, EM and Meta-RaPS
on the STS problems are also not reported previously.

From Table 3, we can see that the best solutions obtained by RWLS are
still better than those of the other four approaches, since it has updated 2
BKSs on these 10 combinatorial problems. Especially, the best solution value
of CYC11 is improved from 4088 to 3968. The only instance on which RWLS
does not achieve the BKS is CYC10, whose BKS is 1792 [33]. However, the
best solution value of RWLS on instance CYC10 is still much better than
those of GRASP, EM, Meta-RaPS, and Musliu.

Combining the results from Tables 2 and 3, we can see that RWLS has
improved 14 BKSs in total. Since Musliu’s algorithm has the best overall
performance among all other algorithms, we choose Musliu’s algorithm for
further comparisons.

Table 2: The best solutions comparison of GRASP [23], EM [24], Musliu [26] and
RWLS on the random USCP instances

Inst. BKS GRASP EM Musliu RWLS Inst. BKS GRASP EM Musliu RWLS
4.1 38 38 38 38 38 C.1 43 43 43 43 43
4.2 37 37 37 37 37 C.2 43 44 43 43 43
4.3 38 38 38 38 38 C.3 43 44 43 43 43
4.4 38 39 38 38 38 C.4 43 44 43 43 43
4.5 38 38 38 38 38 C.5 43 44 43 43 43
4.6 37 38 38 37 37 D.1 24 25 25 24 24
4.7 38 38 38 38 38 D.2 25 25 25 25 24*
4.8 37 38 38 37 37 D.3 24 25 25 24 24
4.9 38 38 38 38 38 D.4 25 25 25 25 24*
4.10 38 38 38 38 38 D.5 25 25 25 25 24*
5.1 34 35 34 34 34 E.1 5 5 5 5 5
5.2 34 34 34 34 34 E.2 5 5 5 5 5
5.3 34 35 34 34 34 E.3 5 5 5 5 5
5.4 34 34 34 34 34 E.4 5 5 5 5 5
5.5 34 34 34 34 34 E.5 5 5 5 5 5
5.6 34 34 34 34 34 NRE1 16 17 16 17 16
5.7 34 34 34 34 34 NRE2 17 17 17 17 16*
5.8 34 35 34 34 34 NRE3 17 17 17 17 16*
5.9 35 36 35 35 35 NRE4 16 17 17 16 16
5.10 34 35 34 34 34 NRE5 17 17 17 17 16*
6.1 21 21 21 21 21 NRF1 10 10 10 10 10
6.2 20 20 20 20 20 NRF2 10 10 10 10 10
6.3 21 21 21 21 21 NRF3 10 10 10 10 10
6.4 20 21 21 20 20 NRF4 10 10 10 10 10
6.5 21 21 21 21 21 NRF5 10 10 10 10 10
A.1 39 39 39 39 38* NRG1 61 - 63 61 61
A.2 38 39 39 38 38 NRG2 62 - 63 62 61*
A.3 39 39 39 39 38* NRG3 62 - 63 62 61*
A.4 37 38 38 37 37 NRG4 62 - 63 62 61*
A.5 38 39 38 38 38 NRG5 62 - 63 62 61*
B.1 22 22 22 22 22 NRH1 34 - 34 34 34
B.2 22 22 22 22 22 NRH2 34 - 34 34 34
B.3 22 22 22 22 22 NRH3 34 - 34 34 34
B.4 22 22 22 22 22 NRH4 34 - 34 34 34
B.5 22 22 22 22 22 NRH5 34 - 34 34 34

+ The best solutions of RWLS are obtained by setting max search step to 3 × 107 as stopping
criterion.

+ We emphaize the updated BKSs by RWLS with boldface and trailing asterisk.

13

Table 3: The best solution comparison of GRASP [23], EM [24], Meta-
RaPS [21], Musliu [26], 3FNLS and RWLS on the combinatorial and STS
instances

Instance BKS GRASP EM Meta-RaPS Musliu 3FNLS RWLS
CLR10 25 25 25 25 25 - 25
CLR11 23 23 23 23 23 - 23
CLR12 23 23 23 23 23 - 23
CLR13 23 23 23 23 23 - 23
CYC06 60 60 60 60 60 - 60
CYC07 144 144 144 144 144 - 144
CYC08 342 348 344 344 342 - 342
CYC09 774 813 812 793 774 - 772*
CYC10 1792 1916 1915 1826 1820 - 1798
CYC11 4088 4268 4272 4140 4088 - 3968*
STS243 198 - - - 198 198 198
STS405 335 - - - - 337 335
STS729 617 - - - - 617 617
STS1215 - - - - - - 1063
+ The best solutions of RWLS are obtained using max search step 1 × 108 as

stopping criterion.
+ We emphaize the updated BKSs by RWLS with boldface and trailing asterisk.
+ The BKS 198 of STS243 has been proven to optimality [34].
+ The BKS 335 of STS405 is recently found by Resende et al. [35] using a biased

random-key genetic algorithm dedicated for the STS problems.

4.2.2. Further Comparison with Musliu’s Algorithm and 3FNLS

The experimental results in the previous section have demonstrated the
ability of RWLS in finding high quality solutions. It has found 14 new best
known solutions among 80 benchmark problem instances in the OR-library.
This section will examine the reason of RWLS’s ability in finding high qual-
ity solution. Is it because it used much longer computation time than other
algorithms or is it because of the novel hybridization of different search op-
erators and the weighting scheme? To answer such questions in detail, we
will compare RWLS against Musliu’s algorithm as well as the well-known 3-
flip neighborhood local search (3FNLS) by Yagiura et al. [19]. We have seen
from Table 2 and Table 3 that Musliu’s algorithm has the best solution quali-
ties among existing algorithms on the USCP instances from the OR-Library.
The 3FNLS algorithm, on the other hand, represents one of the most ef-
fective algorithm that combines Lagrangian Relaxation and local search. It
has been known to be effective on a variety of instances, achieved state-of-
the-art results on the non-unicost very large-scale railway crew scheduling
instances. However, the effectiveness of 3FNLS is not previously tested on
the OR-Library instances as unicost problems.

In order to make the comparisons to be as fair as possible as well as carry
out direct comparisons with 3FNLS, we asked the Musliu for the executable
of his solver on Linux. For 3FNLS, we asked the author Yagiura to provid
us their source code of 3FNLS, which is written in C. The same as RWLS,
we compile 3FNLS on our machine using gcc, with O2 option. Both Musliu,

14

3FNLS and RWLS are running on the same Intel Core i5 3.2Ghz CPU, 4GB
RAM machine under 64bit Linux system. Duo to the randomness of the
algorithms, for each instance, 10 independent trials are performed with dif-
ferent seeds, and the computational results are presented as the best solution
(best), average solution (avg) among the 10 trials, the number of trials that
the best is found as well as the average time (time) on these runs detecting
the best. We follow the suggestion of Musliu, set the tabu factor for the
random problems (4 to NRH) as 0.05, and 0.15 for the combinatoral and
STS problems. The stopping criterion of the three algorithms are set to the
same time limits, which are roughly set according to the report in [26].

Table 4 and Table 5 contain the computational results of Musliu, 3FNLS
and RWLS. As shown in Table 4, for random instances from sets 4 to 6 and
sets A to E, when RWLS and 3FNLS both achieve the same best solutions,
RWLS is more efficient computationally, because it consumes less average
runtimes to achieve the same best and smaller averages. Moreover, RWLS
has obtained 9 better solutions than Musliu and 3FNLS among these 50
instances. As for the larger instances from sets NRE to NRH, the overall
solution qualities of RWLS are still better than Musliu and 3FNLS, both of
the best and the average solutions, while the average runtimes reported by
RWLS are generally much larger than those of Musliu’s algorithm. Observed
that the computational times of Musliu are always tend to be very small even
given longer runtimes, we suspect that Musliu’s algorithm is quickly stuck in
local optima after certain iterations of process.

Table 5 also contains the comparison between Musliu’s algorithm, 3FNLS
and RWLS on the ten combinatorial and 4 STS instances. We can see that
RWLS outperforms Musliu’s algorithm in terms of solution quality by finding
the same or better solutions in all cases, although tends to consume a little
more computation time in some small size problems. RWLS also outperforms
3FNLS on all the combinatorial and STS problems both in solution quali-
ties and computational times. It is quite interesting that 3FNLS’s solution
qualities are generally better than Musliu, although 3FNLS’s performance
on USCPs are not previously investigated by their authors. But when com-
paring to RWLS, it is easy to see that our algorithm outperforms 3FNLS,
for it can always obtain better solution qualities within shorter runtimes,
especially on the larger ones which have many more rows than columns, such
as CYC11 and STS1215.

Combining the results of Table 4 and Table 5, we can see that RWLS has
obtained 19 better solutions than Musliu and 3FNLS given the same amount
of running time on the same machine.

15

Table 4: Computational results comparison between Musliu, 3FNLS and RWLS
on the random USCP instances

Inst
Musliu 3FNLS RWLS

best avg #best time best avg #best time best avg #best time
4.1 38 38.1 9 0.0 38 38.2 8 2.79 38 38.0 10 0.02
4.2 37 37.0 10 0.0 37 37.0 10 0.29 37 37.0 10 0.01
4.3 38 38.0 10 0.0 38 38.0 10 0.22 38 38.0 10 0.01
4.4 38 38.9 3 0.0 38 38.9 1 5.19 38 38.0 10 0.17
4.5 38 38.1 9 0.0 38 38.0 10 1.96 38 38.0 10 0.02
4.6 37 37.4 6 0.0 37 37.6 4 5.58 37 37.0 10 0.13
4.7 38 38.5 5 0.1 38 38.2 8 3.88 38 38.0 10 0.07
4.8 37 37.9 1 0.0 37 37.7 3 5.68 37 37.0 10 0.08
4.9 38 38.2 8 0.0 38 38.0 10 2.91 38 38.0 10 0.02
4.10 38 38.4 7 0.0 38 38.9 1 1.14 38 38.0 10 0.15
5.1 35 35.1 9 0.1 35 35.0 10 0.25 34 34.0 10 0.40
5.2 35 35.1 9 0.0 34 34.5 5 4.52 34 34.0 10 0.10
5.3 35 35.3 7 0.0 34 34.0 10 1.20 34 34.0 10 0.04
5.4 35 35.1 9 0.0 34 34.4 6 3.86 34 34.0 10 0.07
5.5 35 35.1 9 0.0 34 34.0 10 2.57 34 34.0 10 0.06
5.6 34 34.3 6 0.5 34 34.3 7 5.62 34 34.0 10 0.09
5.7 34 34.9 3 0.0 34 34.0 10 1.64 34 34.0 10 0.04
5.8 35 35.4 7 0.2 34 34.7 3 1.77 34 34.0 10 0.17
5.9 35 36.7 1 0.0 35 35.0 10 1.18 35 35.0 10 0.03
5.10 35 35.6 5 0.0 34 34.9 1 6.24 34 34.0 10 0.16
6.1 21 21.2 8 0.0 21 21.0 10 0.32 21 21.0 10 0.02
6.2 20 20.7 3 0.1 20 20.7 3 7.35 20 20.0 10 0.17
6.3 21 21.1 9 0.1 21 21.0 10 0.59 21 21.0 10 0.02
6.4 21 21.1 9 0.0 21 21.0 10 1.34 20 20.0 10 0.48
6.5 21 21.0 10 0.0 21 21.0 10 1.36 21 21.0 10 0.03
A.1 39 39.0 10 0.0 39 39.0 10 5.56 38 38.9 1 10.03
A.2 39 39.1 9 0.4 39 39.0 10 3.40 38 38.0 10 3.46
A.3 39 39.0 10 0.0 39 39.0 10 3.01 38 38.7 3 14.10
A.4 37 37.9 1 1.0 38 38.0 10 4.42 37 37.1 9 4.39
A.5 38 38.9 1 0.4 38 38.9 1 17.84 38 38.0 10 0.42
B.1 22 22.9 2 0.2 22 22.4 6 10.49 22 22.0 10 0.35
B.2 22 22.0 10 0.0 22 22.0 10 6.09 22 22.0 10 0.31
B.3 22 22.0 10 0.0 22 22.3 7 12.33 22 22.0 10 0.68
B.4 23 23.0 10 0.0 23 23.0 10 1.73 22 22.0 10 1.07
B.5 22 22.5 5 0.6 22 22.1 9 6.37 22 22.0 10 0.68
C.1 43 43.8 2 1.1 43 43.4 6 8.66 43 43.0 10 0.81
C.2 43 43.9 2 0.5 43 43.9 1 17.63 43 43.0 10 1.14
C.3 43 43.5 5 1.0 43 43.8 2 13.39 43 43.0 10 0.73
C.4 44 43.9 1 0.7 43 43.8 2 9.65 43 43.0 10 0.82
C.5 43 43.7 3 0.6 43 43.9 1 5.75 43 43.0 10 4.25
D.1 25 25.8 2 0.0 25 25.1 9 12.37 24 24.1 9 7.27
D.2 25 25.3 7 0.9 25 25.0 10 4.86 24 24.9 1 8.54
D.3 25 25.3 7 0.3 25 25.4 6 14.32 24 24.9 1 5.60
D.4 25 25.6 4 0.5 26 26.0 10 0.00 25 25.0 10 1.69
D.5 25 25.4 6 1.0 26 26.0 4 14.42 24 24.9 1 18.27
E.1 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.2 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.3 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.4 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.5 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0

+ Musliu, 3FNLS and RWLS are all run on the same Intel(R) Core(TM) i5 650 3.20GHz CPU,
4GB RAM machine, under 64bit Linux system.

+ Time limits for 4 – 6 and A – E are set to 10 seconds and 20 seconds, respectively.
+ For each instance, the results are reported as the best solution (best), the average solution

(avg) from the 10 runs, the number of runs (#best) that the best is found as well as the average
time (time) over the these runs decting the best.

+ We emphasize our better solutions than Musliu and 3FNLS with boldface.

16

Table 5: Computational results comparison between Musliu, 3FNLS and RWLS on the random
NRE to NRH, combinatorial and STS problems

Inst
Musliu 3FNLS RWLS

best avg #best time best avg #best time best avg #best time
NRE1 17 17.2 8 2.4 17 17.3 7 62.16 17 17.0 10 8.82
NRE2 17 17.2 8 0.8 17 17.2 8 38.80 17 17.0 10 3.64
NRE3 17 17.2 8 0.0 17 17.0 10 51.22 17 17.0 10 3.05
NRE4 17 17.1 9 0.1 17 17.4 6 54.98 17 17.0 10 3.64
NRE5 17 17.4 6 0.7 17 17.2 8 67.59 17 17.0 10 10.76
NRF1 10 10.8 2 1.2 11 11.0 10 0.00 10 10.1 9 25.31
NRF2 10 10.8 2 3.2 10 10.9 1 89.45 10 10.2 8 55.24
NRF3 10 10.6 4 3.2 10 10.9 1 24.44 10 10.1 9 28.34
NRF4 10 10.9 1 3.8 11 11.0 10 0.00 10 10.0 10 36.29
NRF5 10 10.8 2 2.9 11 11.0 10 0.00 10 10.1 9 34.91
NRG1 62 62.6 4 3.2 63 63.3 7 63.81 61 61.3 7 54.05
NRG2 62 62.2 8 3.4 62 63.0 1 88.96 61 61.5 5 69.76
NRG3 63 63.0 10 2.7 63 63.4 6 55.69 61 61.7 3 82.09
NRG4 63 63.2 8 2.6 63 63.3 7 50.41 61 61.9 1 86.72
NRG5 62 63.1 1 3.0 63 63.4 6 30.09 61 61.9 1 88.44
NRH1 34 34.8 2 7.4 35 35.3 7 53.36 34 34.9 1 53.22
NRH2 35 35.0 10 1.5 35 35.2 8 62.59 35 35.0 10 15.39
NRH3 35 35.0 10 0.5 34 35.2 1 59.35 34 34.9 1 97.02
NRH4 34 34.9 1 6.9 35 35.3 7 75.01 34 34.8 2 97.46
NRH5 34 34.9 1 4.3 35 35.1 9 50.73 34 34.9 1 25.56
CLR10 25 25.1 9 0.0 25 25.0 10 2.75 25 25.0 10 0.01
CLR11 23 23.0 10 0.0 23 23.1 9 11.69 23 23.0 10 0.08
CLR12 23 23.0 10 0.5 23 25.1 1 13.87 23 23.0 10 0.38
CLR13 23 24.1 5 5.6 29 29.7 5 16.71 23 23.0 10 3.89
CYC06 60 60.0 10 0.0 60 60.0 10 0.00 60 60.0 10 0.00
CYC07 144 144 10 0.0 144 144.0 10 0.00 144 144.0 10 0.02
CYC08 349 349.9 6 1.8 342 343.8 1 46.60 342 342.0 10 0.30
CYC09 809 813.0 3 15.6 780 780.1 9 104.39 772 773.6 2 266.70
CYC10 1894 1909.9 1 42.7 1801 1807.2 1 819.80 1798 1798.6 7 663.73
CYC11 4270 4271.1 1 0.9 4103 4144.9 3 392.36 3968 4021.1 1 520.69
STS243 198 201.7 2 1.6 198 198.0 10 170.50 198 198.0 10 0.09
STS405 343 345.0 4 7.6 336 336.0 10 151.07 335 335.7 3 117.81
STS729 649 649.8 4 87.9 617 630.3 3 831.78 617 617.0 10 23.36
STS1215 1119 1119.0 10 0.1 1071 1076.3 1 1659.63 1063 1065.9 1 886.25

+ Musliu, 3FNLS and RWLS are all run on the same Intel(R) Core(TM) i5 650 3.20GHz CPU, 4GB RAM
machine, under 64bit Linux system.

+ Time limit for NRE – NRH is set to 100 seconds.
+ Time limit for CLR10 – CLR13, CYC06 – CYC08 and STS243 is set to 20 seconds.
+ Time limit for CYC09 – CYC11 and STS243 – STS729 instances is set to 1000 seconds.
+ Time limit for STS1215 is set to 2000 seconds due to its larger size.
+ For each instance, the results are reported as the best solution (best), the average solution (avg) from the

10 runs, the number of runs (#best) that the best is found as well as the average time (time) over these runs
decting the best.

+ We emphasize our better solutions than Musliu and 3FNLS with boldface.

It is by now clear that RWLS can achieve better or the same solution
quality within the same time limits as Musliu and 3FNLS on the 70 random
USCP instances, 10 combinatorial and 4 STS instances, which shows the
inherent advantages of RWLS in solving USCP, primarily derived from its
unique hybridization of different search operators and the weighting scheme.
In order to gain a deeper understanding of what caused the good perfor-
mance of RWLS on USCP instances, several main differences and similarities
between Musliu, 3FNLS and RWLS are worth noting.

First, we would like to discuss the fitness functions of three algorithms.
For Musliu and 3FNLS, they all define a penalty function as their fitness
functions, specifically, Musliu’s fitness function is defined as the number of
the number of uncovered rows plus the cardinality of the candidate solution,
while when solving USCPs, the penalty function of 3FNLS can be seen as

17

the sum of the penalty weights of rows plus the cardinality of the current
candidate solution. The main difference turns out to be that 3FNLS assign
penalty weights to rows, and during its local search, it adaptively adjust the
weights whenever the search gets stuck. But the fitness function of Musliu can
be seen as each row is assign a constant weight 1, and never changes during
its local search. According to our exprimental results, although Musliu can
almost always find a good solution quickly, as runtime increases, 3FNLS
usually obtains the same or even better solutions than Musliu. Whereas for
RWLS, the fitness function is not clearly defined, but in each iteration, after
randomly choose a uncovered row, than the best column with the greatest
score is selected into the candidate solution, and when removing, the column
with the smallest absolute score value is always selelcted. Therefore, RWLS
always prefer candidate solution with larger total score value of the columns.

Second, the tabu mechanisms are different. Musliu defines a tabu list
which is decided by the production of a tabu factor parameter and the car-
dinality of the initial solution. It stores the information for the columns
which are removed or added in the past certain iterations, and such columns
are not permitted to be selected in the following iterations. For RWLS, a
variety of tabu strategies are adopted, including a timestamp method, the
canAddToSolution restriction, as well as not allowing the last two removed
or added columns to be selected immediately in the next iteration. The
main advantage of our tabu mechanism is that it is universal for different
instances, whereas the performance of Musliu heavily depends on the tabu
factor factors for different kinds of problems. In fact, the best solutions pre-
viously reported by Musliu are obtained by exploiting different tabu factors
for every individual instances, which is beyond our work, thus we only use
the suggested parameters in our experiments. We do not find obvious tabu
mechanisms in the 3FNLS algorithm.

Third, the strategies used to escape from local optima are different, which
may be the most significant difference between Musliu, 3FNLS and RWLS.
RWLS uses a weighting scheme to update the weights of uncovered rows when
stuck in local optima. The adaptive adjustment of weights in each iteration
leads to a good chance to escape from a local optimum. As mentioned above,
Musliu can be seen as assign all rows a constant weight of 1, and thus may
get stuck in a local optimum after certain iterations. Different with Musliu,
3FNLS also uses a mechanism to adaptively adjust the weights of rows dur-
ing its local search, but unlike our weighting increase scheme, 3FNLS uses
complex weighting adjust techniques that tends to consume more computing.

Fourth, we want to further note that although 3FNLS has a sophisticated
local search procedure, it also uses the information from solving Lagrangian
Relaxation for prioritizing columns during the search. But in some situations,

18

information from Lagrangian Relaxation would become useless in some cases,
such as for the STS problems [19].

4.3. The Effectiveness of the Row Weighting Scheme

In RWLS, the weighting scheme is used to help the search from escaping
from local optima. To investigate the effectiveness of this method, we execute
our algorithm without it, which means that the weights of the rows remain
1 all the time. We then compare the results with the original RWLS on the
hardest combinatorial instance CYC11. To distinguish between these two
algorithms, we name the one without row weighting scheme as RWLS-1.

Table 6: The effectiveness of the row weighting scheme on CYC11
XXXXXXXXXXXAlgorithm

Step
1 102 103 104 105 106 107 108

RWLS 4799 4742 4628 4598 4516 4289 4199 3968
RWLS-1 4799 4742 4626 4421 4371 4317 4317 4317

The first row of Table 6 contains the results obtained by RWLS, and
the second row contains the results of RWLS-1, at different search steps,
respectively. We can see that, initially at Step 1, RWLS and RWLS-1 have
the same solution because they share the same initial solution construction
method. During the first 105 search steps, RWLS-1 is able to obtain better
solutions than RWLS, but after that, the solutions found by RWLS continue
to improve, whereas those of RWLS-1 remain the same. It is clear that
the row weighting scheme helps RWLS to avoid being trapped in a local
optimum and to continue exploring the solution space. Similar observations
can be made on other instances.

4.4. Evaluation RWLS on the Railway Instances

To show the effectiveness of RWLS, we evaluate it further on the challeng-
ing railway instances. Table ?? gives the details of the railway crew schedul-
ing instances from the OR-Library [4]. These instances are very large, rising
up to thousands of rows and millions of columns. Hence, directly tackling
them can seldom produce high quality solutions. Noting that the railway
instances have many more columns than rows, one type of approaches to
deal with such instances is to use Lagrangian relaxation and its dual infor-
mation to reduce the number of columns. This is indispensable in several
heuristics and has been shown to be very effective for the non-unicost in-
stances [17, 18, 19]. We will incorporate such a technique into RWLS.

19

Table 7: Details of the railway instances

Instance m n Density Instance m n Density
RAIL507 507 63009 1.2 RAIL2586 2586 920683 0.4
RAIL516 516 47311 1.3 RAIL4284 4284 1092610 0.2
RAIL582 582 55515 1.2 RAIL4872 4872 968672 0.2
RAIL2536 2536 1081841 0.4
+ We turn this set of instances into unicost problems by ignoring the cost infor-

mation.

More precisely, we use the problem size reduction technique from 3FNLS [19],
which is based on Lagrangian relaxation and uses the subgradient method to
solve the core problem defined by [18]. By incorporating this technique, we
adapt our RWLS to Algorithm 6, which is noted as RWLS-R. The problem
size reduction in 3FNLS, which is also named variable fixing, has two phases,
i.e., the initial fixing stage and the modification stage. Initially, the subgra-
dient method is called to solve the Lagrangian dual relaxation to obtain the
Lagrangian cost for columns (variables) and only columns good enough are
selected into the local search (the other variables are set to 0). Then, when-
ever the local search stops, the fixed variables are heuristically adjusted by
freeing some variables whose value are zero previously. In RWLS-R, the ini-
tial column selection in Line 6 and column addition in Line 9 are based on
the first fixing phase and the modify fixing phase in 3FNLS, respectively.
The interested reader is referred to [19] for more details.

From Algorithm 6, we can see that the local search is conducted many
times, i.e., each time on different sets of selected columns. In Line 5, the
local search is on the original problem, and in Line 8, the local search is only
on the small set of columns which have been selected. In our experiments,
we set the maximum number of search steps for the local search in Line 5 to
1000, and that in Line 8 to 10 ∗ selected n, where selected n is the number
of selected columns.

Algorithm 6 RWLS-R: Incorporating RWLS with problem size reduction
1: function RWLS-R()
2: read problem instance
3: preprocessing to add columns that able to cover some rows alone to the candidation solution

permanently
4: init a solution
5: local search
6: column selection
7: while stopping time not reached do
8: local search on the selected columns
9: add some new columns to the selected columns
10: restart the local search by initiating the candidate solution as the best found solution
11: end while
12: end function

20

In order to compare the results with CPLEX, we run our algorithms and
3FNLS on an Intel Duo Core 2.4GHz CPU with 2 GB RAM machine which
has CPLEX12.5 2 installed. We set the maximum runtime for RWLS-R and
3FNLS to 100 seconds for instances RAIL507, 516 and 586, 1000 seconds
for RAIL2536, 2586, 4284 and 4872 because of their larger sizes. For each
instance, the results of ten independent runs of RWLS-R and 3FNLS are
shown in 8. To the best of our knowledge, no results have yet been reported
by other methods that treat these railway instances as USCPs.

From Table 8, we can see that for the first three instances (RAIL507,
516, 582), CPLEX is able to solve them to optimality in 1375.57 seconds,
6.49 seconds, 158.67 seconds, respectively. However, because the last four
instances (RAIL2536, 2586, 4284, 4872) are very large, CPLEX failed to
produce solutions on these instances.

According to Table 8, we can find good solutions to all railway instances,
including the last four large instances where CPLEX fails to produce a so-
lution. On the first three instances, both RWLS-R and CPLEX find good
solutions, whereas the best solution by 3FNLS on RAIL582 is inferior than
CPLEX and RWLS-R. However, on the four larger ones (RAIL2536, 2586,
4284, 4872), 3FNLS is able to obtain better solutions than RWLS-R. Here,
we also report the lower bounds found by 3FNLS on instances RAIL2536,
2586, 4284, 4872 are 363, 505, 579, 857, respectively.

Table 8: Test railway instances as unicost problems
Instance RWLS-R 3FNLS CPLEX12.5

best avg #best time best avg #best time sol time
RAIL507 96 96.9 1 35.24 96 96.7 3 67.88 96 1375.57
RAIL516 134 134.1 9 65.45 135 135.6 4 40.93 134 6.49
RAIL582 126 126.3 7 27.60 126 126.0 10 31.37 126 158.67
RAIL2536 381 381.6 4 373.12 378 379.2 2 733.34 - -
RAIL2586 520 521.6 2 300.62 518 518.9 2 391.10 - -
RAIL4284 597 599.4 3 550.40 594 595.0 3 834.31 - -
RAIL4872 882 884.6 2 778.28 879 880.5 1 817.12 - -
+ For 3FNLS, we convert these problems to unicost by replacing the cost information to 1 for all

columns.

4.5. How Good Is CPLEX in Solving USCP?

For non-unicost SCPs, it has been shown the random instances from sets
4 to 6 and A to D can be solved to optimality by CPLEX in reasonable
time [10]. However, the USCP is generally considered to be harder to solve
than non-unicost SCPs [3]. In order to find out the difficulties of the random

2According to IBM, the newly released CPLEX12.5 is generally 50% faster than its
earlier releases in the last ten years.

21

USCP instances from 4 to 6 and A to D, we apply CPLEX to these 45
instances.

In Table 8, we report the best solutions found by CPLEX within 100
seconds for groups 4 to 6, since they are quite small and generally regarded
as easy, and 1000 seconds for groups A to D because of their larger sizes. The
table includes the BKS (not those updated by RWLS) for comparison. It can
be seen that for these 45 instances, CPLEX can only achieve seven BKSs.
In fact, according to our experience, as time increases, solutions found by
CPLEX improve very slowly. For instance 4.1, CPLEX can find a solution
of 39 in 100 seconds, but it takes about 1000 seconds to achieve the BKS
of 38. Similarly on the NRE1 instance, CPLEX needs about 15000 seconds
to achieve a solution of 17. It keeps running for about 50000 seconds before
terminating due to an out of memory error and the solution still remains 17.

Table 9: Results of CPLEX12.5 on instances from
4 – 6 and A – D as USCPs

Instance BKS CPLEX12.5 Instance BKS CPLEX12.5
4.1 38 39 A.1 39 40
4.2 37 37 A.2 38 40
4.3 38 38 A.3 39 40
4.4 38 40 A.4 37 38
4.5 38 38 A.5 38 39
4.6 37 38 B.1 22 22
4.7 38 39 B.2 22 23
4.8 37 38 B.3 22 23
4.9 38 39 B.4 22 23
4.10 38 39 B.5 22 23
5.1 34 35 C.1 43 44
5.2 34 35 C.2 43 44
5.3 34 34 C.3 43 45
5.4 34 35 C.4 43 44
5.5 34 36 C.5 43 45
5.6 34 35 D.1 24 25
5.7 34 35 D.2 25 26
5.8 34 34 D.3 24 26
5.9 35 36 D.4 25 26
5.10 34 36 D.5 25 26
6.1 21 22
6.2 20 21
6.3 21 22
6.4 20 21
6.5 21 21
+ Time limits are set to 100 seconds for instances from 4 to 6.
+ Time limits are set to 1000 seconds for instances from A to D.
+ We place the best know solutions along side to show the solution

qualities of CPLEX.
+ The results are obtained by an Intel Core Due 2.4GHz CPU with

2 GB RAM machine.

The results in Table 9 indicate that the 45 USCP instances are not easy
to solve, although their non-unicost versions are. Combining the results of

22

RWLS from Table 4, we can conclude that RWLS is much better than CPLEX
on USCP instances, because it almost always achieves or even updates the
BKSs.

5. Conclusion and Future Work

In this paper, we have introduced a new local search heuristic, dubbed
RWLS, for USCPs. We proposed a local improvement framework to itera-
tively reduce the size of the currently best solution, which is realized by using
two efficient operators to perturb the currently best solution when it becomes
infeasible. In addition, several widely used strategies are adopted by RWLS,
including a weighting scheme that adaptively updates the weights of rows
(elements) to help RWLS to escape from local optima, two tabu strategies
to avoid cycles and a timestamp method to break ties whenever adding or
removing a set. RWLS successfully hybridized these general strategies into
its local search framework.

The effectiveness and efficiency of RWLS have been evaluated on a large
number of instances from the OR-Library [4] and Steiner triple systems [27],
which vary from hundreds of rows (elements) and thousands of columns (sets)
to tens of thousands of rows and columns. The experimental results show
that RWLS has an excellent performance and outperforms existing state-of-
the-art algorithms. It has updated 14 best known solutions in the literature.
For the combinatorial instance CYC11, the best know solution is updated
from 4088 to 3968.

RWLS is especially effective on the ten combinatorial instances from the
OR-Library as well as instances from the Steiner triple systems, which con-
tain many more rows than columns. However, for instances containing a
significantly larger number of columns but a few rows, the problem size re-
duction techniques should be adopted. In Section 4.4, we have shown the
effectiveness of RWLS in dealing with such USCP instances by incorporat-
ing with the problem size reduction technique from [19]. This is the first
time that the seven railway crew scheduling instances were solved as USCPs,
outperforming CPLEX 12.5.

In spite of excellent performance of RWLS on 91 USCP benchmark in-
stances, more work is needed in the future. First, the extended algorithms
RLWS-R was was outperformed by 3FNLS on the four larger RAIL prob-
lems. The reason for this needs to be studied. Second, the study in this paper
is experimental in nature. It will be necessary to analyze the algorithm as
well as the characteristics of the benchmark instances (especially the hardest
ones) theoretically, so that we can understand more which algorithmic fea-
tures are most important in solving what kinds of USCP instances. Third,

23

we have not analyzed in depth the impact of different tabu strategies on
RWLS’s performance, which should be done in the future. Fourth, it would
be useful to investigate automatic stopping techniques for RWLS, instead of
setting a time limit in advance. Fifth, it would be interesting to adapt some
of RWLS’s ideas to solve other hard combinatorial optimization problems.

Acknowledgments

We are grateful for the authors N. Musliu and M. Yagiura for providing
their executable and source code of their algorithms, respectively. We are
appreciate for the valuable comments of the anonymous reviewers, which
have been very helpful for improving the quality of this paper.

This research work was partially supported by an EPSRC grant (No.
EP/I010297/1) and the Fundamental Research Funds for the Central Uni-
versities (WK0110000023). Xin Yao was supported by a Royal Society Wolf-
son Research Merit Award. Thomas Weise was supported by the National
Natural Science Foundation of China under Grants 61150110488, the Special
Financial Grant 201104329 from the China Postdoctoral Science Foundation,
and the Chinese Academy of Sciences (CAS) Fellowship for Young Interna-
tional Scientists 2011Y1GB01.

References

[1] A. Caprara, M. Fischetti, P. Toth, D. Vigo, P. L. Guida, Algorithms for
railway crew management, Mathematical Programming 79 (1-3) (1997)
125–141.

[2] J. Bautista, J. Pereira, Modeling the problem of locating collection areas
for urban waste management. an application to the metropolitan area
of barcelona, Omega 34 (6) (2006) 617–629.

[3] B. Yelbay, S. Birbil, K. Bulbul, The set covering problem revisited: an
empirical study of the value of dual information, Optimization Online
(2012).

[4] J. E. Beasley, OR-Library: distributing test problems by electronic mail,
Journal of the Operational Research Society (1990) 1069–1072.

[5] M. R. Gary, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness (1979).

[6] J. E. Beasley, An algorithm for set covering problem, European Journal
of Operational Research 31 (1) (1987) 85–93.

24

[7] M. L. Fisher, P. Kedia, Optimal solution of set covering/partitioning
problems using dual heuristics, Management Science 36 (6) (1990) 674–
688.

[8] E. Balas, M. C. Carrera, A dynamic subgradient-based branch-and-
bound procedure for set covering, Operations Research 44 (6) (1996)
875–890.

[9] J. E. Beasley, K. Jörnsten, Enhancing an algorithm for set covering
problems, European Journal of Operational Research 58 (2) (1992) 293–
300.

[10] A. Caprara, P. Toth, M. Fischetti, Algorithms for the set covering prob-
lem, Annals of Operations Research 98 (1-4) (2000) 353–371.

[11] V. Chvatal, A greedy heuristic for the set-covering problem, Mathemat-
ics of Operations Research 4 (3) (1979) 233–235.

[12] F. J. Vasko, An efficient heuristic for large set covering problems, Naval
Research Logistics Quarterly 31 (1) (1984) 163–171.

[13] T. A. Feo, M. G. Resende, A probabilistic heuristic for a computationally
difficult set covering problem, Operations Research Letters 8 (2) (1989)
67–71.

[14] J. E. Beasley, P. C. Chu, A genetic algorithm for the set covering prob-
lem, European Journal of Operational Research 94 (2) (1996) 392–404.

[15] L. W. Jacobs, M. J. Brusco, Note: A local-search heuristic for large set-
covering problems, Naval Research Logistics 42 (7) (1995) 1129–1140.

[16] J. Beasley, A lagrangian heuristic for set-covering problems, Naval Re-
search Logistics (NRL) 37 (1) (1990) 151–164.

[17] S. Ceria, P. Nobili, A. Sassano, A lagrangian-based heuristic for large-
scale set covering problems, Mathematical Programming 81 (2) (1998)
215–228.

[18] A. Caprara, M. Fischetti, P. Toth, A heuristic method for the set cov-
ering problem, Operations research 47 (5) (1999) 730–743.

[19] M. Yagiura, M. Kishida, T. Ibaraki, A 3-flip neighborhood local search
for the set covering problem, European Journal of Operational Research
172 (2) (2006) 472–499.

25

[20] S. Umetani, M. Yagiura, Relaxation heuristics for the set covering prob-
lem, Journal of the Operations Research Society of Japan 50 (4) (2007)
350–375.

[21] G. Lan, G. W. DePuy, G. E. Whitehouse, An effective and simple heuris-
tic for the set covering problem, European Journal of Operational re-
search 176 (3) (2007) 1387–1403.

[22] T. Grossman, A. Wool, Computational experience with approximation
algorithms for the set covering problem, European Journal of Opera-
tional Research 101 (1) (1997) 81–92.

[23] J. Bautista, J. Pereira, A GRASP algorithm to solve the unicost set
covering problem, Computers & Operations Research 34 (10) (2007)
3162–3173.

[24] Z. Naji-Azimi, P. Toth, L. Galli, An electromagnetism metaheuristic
for the unicost set covering problem, European Journal of Operational
Research 205 (2) (2010) 290–300.

[25] H. H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Ap-
plications, San Francisco, USA: Morgan Kaufmann, 2005.

[26] N. Musliu, Local search algorithm for unicost set covering problem, in:
Advances in Applied Artificial Intelligence, Springer, 2006, pp. 302–311.

[27] D. Fulkerson, G. Nemhauser, L. Trotter, Two computationally difficult
set covering problems that arise in computing the 1-width of incidence
matrices of steiner triple systems, in: M. Balinski (Ed.), Approaches
to Integer Programming, Vol. 2 of Mathematical Programming Studies,
Springer Berlin Heidelberg, 1974, pp. 72–81.

[28] J. Thornton, Clause weighting local search for SAT, Journal of Auto-
mated Reasoning 35 (1-3) (2005) 97–142.

[29] J. Thornton, D. N. Pham, S. Bain, V. Ferreira Jr, Additive versus mul-
tiplicative clause weighting for sat, in: AAAI, Vol. 4, 2004, pp. 191–196.

[30] F. Hutter, D. A. Tompkins, H. H. Hoos, Scaling and probabilistic
smoothing: Efficient dynamic local search for sat, in: Principles and
Practice of Constraint Programming-CP 2002, Springer, 2006, pp. 233–
248.

26

[31] P. Morris, The breakout method for escaping from local minima, in:
Proceedings of the eleventh national conference on Artificial intelligence,
AAAI’93, AAAI Press, 1993, pp. 40–45.

[32] E. Balas, A. Ho, Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study, Springer, 1980.

[33] H. Harborth, H. Nienborg, Maximum number of edges in a six-cube
without four-cycles, Institute für Mathematik, Techn. Univ., 1994.

[34] J. Ostrowski, J. Linderoth, F. Rossi, S. Smriglio, Solving large steiner
triple covering problems, Operations Research Letters 39 (2) (2011) 127–
131.

[35] M. G. Resende, R. F. Toso, J. F. Gonçalves, R. M. Silva, A biased
random-key genetic algorithm for the steiner triple covering problem,
Optimization Letters 6 (4) (2012) 605–619.

27

