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Abstract—Efficient execution is crucial to the successful de-
ployment of deep learning models to real-world applications.
Considerable recent effort have been devoted to computer sys-
tems for automatic discovery of efficient schedules for executing
tensor programs on given hardware platforms. Built on TVM [1],
Ansor [2] is the most recent and state-of-the-art framework
for auto-scheduling deep neural net computation pipelines. In
this paper, we present Bansor, an improved version of Ansor
for automatic optimization of tensor programs, using bandit-
based reinforcement learning (RL). We reexamine the algorithmic
procedures of Ansor, and identify two selection sub-problems
where RL techniques are readily usable. We then introduce
bandit-based algorithms to balance exploration and exploitation
during the processes of sketch selection and task scheduling. We
evaluate the resulting algorithm, Bansor, on a wide range of
tensor programs and two hardware platforms. Experiment results
show that Bansor yields significant improvement over Ansor. On
hard network test cases, Bansor uses an order of magnitude less
number of measurement trails to attain Ansor’s best schedules,
eventually converging to significantly better results given an equal
number of measurement trials, despite the fact that Ansor’s
performance has been superb.

Index Terms—Tensor program scheduling, Reinforcement
learning, Bandit algorithms

I. INTRODUCTION

Recent advancements in deep learning [3] have prompted
significant progresses in a number of areas, resulting in
ubiquitous industrial applications. Due to their extensive use
of tensor computations, it is known that executing deep neural
networks (DNNs) can incur high latency. Indeed, algorithms
and frameworks to reduce the execution latency of deep
neural network models on heterogeneous hardware platforms
have attracted considerable industrial and academic interest in
recent years [4]. A number of deep learning frameworks have
been developed to facilitate research and deployment (e.g.,
PyTorch [5]), which translate tensor operators (e.g., conv2d)
to vendor-supported kernel libraries (e.g., cuDNN [6]) to attain
fast execution. However, developing kernel libraries requires
significant human engineering for every specific hardware
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variant, hindering hardware innovations, especially for AI-
specialized accelerators [7].

To overcome this obstacle, Chen et al. [4] developed the
TVM framework, which uses AutoTVM [1] to automatically
generate efficient and hardware-dependent low-level imple-
mentations (i.e., schedules) for tensor programs. AutoTVM
requires hand-crafted manual templates for each tensor oper-
ator, then uses simulated annealing (SA) and a cost model to
search for fast schedules. The cost model is used to predict
the quality of schedules, and is used to guide the SA. The
SA search is repeated many times, where at the end of each
round, the cost model is updated from a dataset consisting
of all generated and measured schedules. AutoTVM achieved
competitive results with hand-tuned libraries on both CPUs
and GPUs. The upgraded version of AutoTVM, namely An-
sor [2], significantly improved the performance of AutoTVM
by removing the burden of template writing with an automatic
sketch generation procedure, and repeatedly using a well-
designed genetic algorithm for searching parameters within
sketches.

Despite the superior performance, in light of the algorithmic
advancements in many AI sub-fields, in this paper, we show
that by introducing RL techniques from the bandit [8]
literature, prominent improvements can be achieved. We thus
name our algorithm Bansor. Experimental comparisons with
Ansor show that Bansor surpasses Ansor in almost all test
cases for both operator tuning and whole network optimization
scenarios.

The rest of this paper is organized as follows. In Section
2 we review Ansor. In Section 3 we describe our algorithmic
improvements over Ansor. Section 4 discusses related work.
Experiment results are reported in Section 5. Finally, we
provide our conclusion in Section 6.

II. AUTO-SCHEDULING IN ANSOR

To keep this paper self-contained, we first provide intro-
ductory description of two important concepts (i.e., tasks and
sketches) for Ansor, then give a brief summary of its auto-
scheduling algorithm.



Fig. 1: Ansor generated sketches for a matrix multiplication
task on an Intel CPU.

A. Tasks

A DNN can be topologically expressed as a directed acyclic
computation graph (DAG). Ansor optimizes the total latency
by partitioning the graph into a set of independent subgraphs.
Each subgraph is viewed as a task. For example, ResNet-50
[9] contains 29 different subgraphs, where each of them stands
for a convolution layer with different shape information (e.g.,
input dimension, kernel size, stride, padding). A subgraph may
appear multiple times in a DNN E . Let wi be the number of
times task Ti appears and suppose there are m tasks in total,
the overall latency can be expressed using weighted sum:

f̂(E) =

m∑
i=1

wi · g(Ti) (1)

where g(Ti) is the latency of a single task Ti, e.g., a 2D
convolution layer composed by convolution operation followed
by element-wise activation function. We note that a standalone
operator (e.g., conv2d operation itself) can also be optimized
by Ansor as a single task.

B. Sketches

Given a task, sketches represent a high-level structure for
the implementation of that computation task. Suppose we are
to optimize task Ti, Ansor first derives a set of sketches STi
by taking into account the target hardware properties, and
then fine-tunes the parameter choices within a sketch through
random annotation. Figure 1 shows an example for a matrix
multiplication tensor operator task on CPU. Three sketches
with different loop structures are derived.

C. Auto-Scheduling

The auto-scheduling algorithm in Ansor is a repeated pro-
cedure that can be summarized as in Algorithm 1. The input
to the algorithm contains a tensor program e (e.g., a neural
net, a conv2d layer or a matrix-multiplication operator), hard-
ware information h, and parameters for configuring the auto-
tuning. Two key parameters are total number of measurements
n measures and number of measurements to be performed

Algorithm 1: Auto-scheduling in Ansor
Input : e: tensor program expression; h: hardware property;

n measure: maximum number of measure trials;
n measure per round: measures per round.

Result: An efficient hardware-dependent schedule for e
1 Split e into m tasks T1, T2, . . . , Tm
2 For each task i, using h, generate a set of sketches STi
3 count← 0
4 Initialize cost model C
5 while count < n measures×m do
6 Select a task based on gradient
7 Randomly select a sketch κ from STi
8 Sample initial population of schedules P
9 GA: repeatedly do mutation, cross-over on P , using C

10 Send top n measures per round schedules to
measure on hardware and write result to dataset D

11 Update cost model C using data in D
12 count← count+ n measures per round
13 end
14 return best schedules found

each round n measures per round. Note that the genetic
algorithm (GA) also contains several parameters — we ignore
them in Algorithm 1 as we will keep GA untouched in this
paper.

To tune a DNN E that consists of m tasks, a straightforward
approach is tuning each task Ti independently in parallel;
however, in practice, different tasks have to share a fixed
total number of measure trials, i.e., n measures . Thus, given
t ∈ Zm as a measure trial vector, Ansor optimizes a surrogate
function f(g(t1), g(t2), . . . , g(tm)). At each round, in order
to achieve largest latency reduction, Ansor selects a task by
following the task that has the largest approximated gradient
| ∂f∂ti
|:

∂f

∂ti
≈ ∂f

∂g(ti)
· (αg(ti)− g(ti −∆t)

∆t
+

(1− α)(min(−g(ti)

ti
, β

Ci

maxk∈Nr(i) Vk
− g(ti))))

(2)

∆t is a small time window, Ci is the number of floating point
operation in task i and Vk is the number of floating point
operation per second in task k. Nr(i) contains neighbors of
i, i.e., those tasks similar to i. See [2] for details. In the
beginning, Ansor initializes t = 1 by warming up with a
single round of round-robin. In the remaining, Ansor uses ε-
greedy [10] to encourage exploration, i.e., it chooses a random
tasks i by probability ε, otherwise task i ← arg maxi | ∂f∂ti

|,
then sets ti ← ti + 1. Note that if Ansor is used to optimize
a single task, this task scheduling is ignored.

III. BANSOR: IMPROVED ANSOR WITH BANDITS

We identify two selection subproblems to improve Ansor’s
auto-scheduling.

A. Sketch Selection using UCB

From Algorithm 1 we see that Ansor selects a sketch
uniform randomly in each round to run the evolutionary



search on. However, for a given task T and hardware h,
a reasonable argument is that sketches are having disparate
qualities, i.e., it might be easier for evolutionary search to
find good performing schedules from sketch a than b simply
because a’s loop structure is more suitable to run T on
hardware h. Suppose there are k sketches, the optimal schedule
cost for each sketch κi is noted as oi,∀1 ≤ i ≤ k, and at
round N(T ) the previously obtained schedule cost sequences
at sketch i is noted as Xi. We then perform sketch selection as
a stochastic bandit that can be optimized using an upper-bound
confidence (UCB) [11] formula:

UCB(κi) = r(X̂i) + C

√
2 logN(T )

N(κi)
, (3)

where X̂i , min{Xij | j = 1, . . . , N(κi)}, N(T ) is the
number of rounds so far; N(Si) is the number of rounds that κi
has been selected; C is constant; r is a function that transforms
the cost sequence into a single score of [0, 1].

r(X̂i) =
min{X̂j | j = 1, . . . , k}

X̂i

(4)

That is, we use the minimum latency to define the reward
because we care more about whether a sketch can generate
the fastest schedule, rather than the average ability to generate
fast schedules.

B. Task Selection

As shown in Algorithm 1, when tuning the neural network,
Ansor will select the task with the largest gradient value | ∂f∂ti

|
in each round and adopt an ε-greedy strategy to encourage
exploration. This prioritizes a subgraph that has a high initial
latency, but it is known that (e.g, for stochastic bandits) ε-
greedy strategy may result in a cumulative regret that grows
linearly with number of rounds [8]. Thus, similar to sketch
selection, we propose to use the UCB to balance exploration
and exploitation for task selection:

UCB(Ti) = r(Ti) + C

√
2 logN(E)

N(Ti)
, (5)

where N(E) is the number of search rounds so far; N(Ti) is
the number of search rounds that task Ti has been selected; C
is constant. Reward for task Ti, i.e., r(Ti) ∈ [0, 1], is defined
as follows:

r(Ti) =
| ∂f∂ti
|

max{| ∂f∂tj
| | j = 1, . . . ,m}

(6)

The importance of adding exploration to task selection is
that the term | ∂f∂ti

| is essentially a crude approximation, re-
sembling a stochastic reward in bandit problems. An algorithm
that does not effectively explore alternatives may get stuck on
certain tasks that repeatedly appear to be promising due to
the noise in evaluation. For stochastic bandits, UCB attains
a successful exploration with logarithmic cumulative regret,
while ε-greedy’s regret is linear [11].

IV. RELATED WORK

Schedule search framework and algorithms: Based on
manually written schedule templates, AutoTVM [1] is the
first auto-schedule search algorithm developed upon TVM. It
searches for best schedules based on a statistical cost model
learned from data obtained by running tensor programs on
hardware. The major drawback for AutoTVM is that the
performance of schedule search is limited by quality of the
manually created templates for each operator and targeting
hardware platform. In this regard, FlexTensor [12] improves
upon AutoTVM by leveraging a method that uses template for
a family of operators sharing similar computation structures.
Instead of letting human engineers directly encode hardware
properties into operator templates, Ansor [2] proposes to use
concise rule sets to describe different hardware platforms,
then devises an algorithm to automatically create preliminary
schedule templates, called sketches. Given an operator or
subgraph, Ansor randomly samples a sketch from a list of
available sketches and runs an evolutionary search to annotate
the parameters of the sketch. Similar to AutoTVM, a cost
model, XGBoost [13] by default, is used by the evolutionary
search for assessing schedule qualities. Ansor runs itera-
tively, where at each iteration, top schedules are evaluated
by hardware, and the cost model is then retrained on these
newly produced data points. Ansor outperforms Halide [14],
FlexTensor, AutoTVM and other frameworks on a wide range
of benchmarks.

Bandits and reinforcement learning: Multi-armed bandit [8]
is often regarded as the simplest problem model for rein-
forcement learning [10], where there is only one state and
multiple actions - each associated with a reward drawn from
some unknown probability distribution. A variety of bandit
problems have been studied in the literature with different
specific assumptions on the reward distributions, where the
central quest is to balance exploration and exploitation. In
our application scenario, we adopt stochastic bandit, since the
cost model training typically converges after certain rounds
of search, making the rewards sampled from the genetic algo-
rithm akin to i.i.d. Besides UCB [11], Bayesian approach, such
as Thomas Sampling [15], can be used for stochastic bandits,
and in practice they may show better empirical results in terms
of cumulative regret due to more concentrated exploration,
whereas in our application, the continual exploration of UCB
is arguably more desirable as the ultimate goal is to identify
a best schedule, not to optimize cumulative regret.

V. EXPERIMENTS

We evaluate the performance of programs generated by
Bansor on three aspects: single operators, subgraphs, and
entire neural networks. To have a fair comparison, both Bansor
and Ansor are built from the same code base 1.

The generated tensor programs are benchmarked on two
hardware platforms: Intel CPU (Xeon Gold 6140 CPU @

1https://github.com/apache/tvm



2.30GHz) and NVIDIA GPU (Tesla V100). All the test cases
are exactly the same as those in [2].

Due to expensive evaluation cost, extensively parameter
tuning is difficult, we thus tune the exploration constant C
from {0.1, 0.3, 0.5, 1.0} using a matrix multiplication task on
CPU, then set C to 0.3 for both sketch and task selection.

A. Single Task Optimization

We first evaluate the performance of Bansor on 10 common
deep learning operators, namely one-dimensional convolution
(C1D), two-dimensional convolution (C2D), three-dimensional
convolution (C3D), matrix multiplication (GMM), group con-
volution (GRP), dilated convolution (DIL), depth-wise convo-
lution (DEP), transposed 2D convolution (T2D), capsule 2D
convolution (CAP), and matrix 2-norm (NRM). We compare
Ansor and Bansor on 80 test cases. For each operator, we use
4 shapes and evaluate them on two different batch sizes (1 and
16). These test cases are exactly the same compared to those
used in [2].

As in [2], we allow Ansor and Bansor to have 1000
measurement trials for each test case, which is arguably large
enough for search to converge. For each test case, we collect
the best schedule costs in milliseconds, then plot the geometric
mean of the four shapes. The geometric mean is normalized
to the best performing framework such that the best algorithm
has a normalized performance of 1. As shown in Figure 2,
Bansor performs better for all operators and batch sizes -
finding schedules that are faster than those found by Ansor
by 1.04–1.59×.

We next evaluate Bansor on two common subgraphs in
DNNs: the 2D convolution layer (ConvLayer) that consists
of a two-dimensional convolution, batch normalization and
ReLU operators, and the TBS layer composed of two matrix
transposes, one batch matrix multiplication, and a softmax
function. Again, we use exactly the same test cases as in [2]
(four different shapes and two batch sizes), and run them on
both CPU and GPU for 1000 measurement trials. Figure 3
summarizes the result, which indicates that Bansor outper-
forms Ansor with a speedup of up to 1.40×.

Table I shows the number of sketches generated for each
operator or subgraph. We see that most of them have 3
sketches. Subgraph “ConvLayerG” has only 1 sketch, indi-
cating that Bansor would behave exactly the same as Ansor
for this case. This explains the almost identical performance
between Ansor and Bansor in Figure 3. For the other three
cases however, Bansor outperforms Ansor, suggesting that
UCB sketch selection indeed brought a beneficial effect.

To further investigate the performance of Ansor and Ban-
sor under different parameter settings, we run them on a
convolution operator and report the performance curve. We
pick a 1D convolution operator with the shape configuration
(batch, length, input channel, output channel, kernel size,
stride, padding) equals to (1, 64, 256, 256, 5, 1, 2). Each
run of a variant uses 1000 measurement trials. Each curve is
the median of 5 runs. As in [2], for each trial i, we collect the
lowest median latency achieved for the operator up to trial i.

Fig. 2: Single Operator Results on CPU.

TABLE I: Number of sketches for each operator or subgraph.
C.L means convolution layer. @C means on CPU. @G means
on GPU. The single operators, i.e., C1D, C2D, . . ., NRM,
were only tested on CPU.

C1D C2D C3D GMM GRP DIL DEP

3 3 3 3 3 3 3

T2D CAP NRM C.L@C C.L@G TBS@C TBS@G
3 3 3 3 1 27 4

We plot this latency normalized to the latency achieved by the
best variant. The four variants are named “Ansor nmpr16”,
“Bansor nmpr16”, “Ansor nmpr64” and “Bansor nmpr64”,
where nmpr represents number of measurement trials per
round. Figure 4 shows that the two Bansor variants outperform
Ansor’s throughout nearly the entire auto-tuning process. The
variant Bansor nmpr16 performed better than Bansor nmpr64
because the nmpr16 version conducted four times more rounds
allowing Bansor to spend more rounds on sampling from better
sketches.

B. Multi-Task Whole Network Optimization

As in [2], we evaluate task scheduling algorithms on the
following DNNs: 3D-ResNet-18 [16], DCGAN [17], and
BERT [18]. Each network is evaluated at batch sizes of 1 and
16 on CPU and GPU. Besides Ansor, we run two versions



Fig. 3: Subgraph results on CPU and GPU.

Fig. 4: Search progress of Bansor versus Ansor on 1D convo-
lution operator on CPU.

of Bansor: one with sketch UCB selection (Bansor1), and the
other with both sketch and task UCB selection (Bansor2). As
recommended by Ansor, for any given DNN, we run those
algorithms for 1000×m measurement trials, where m is the
number of tasks in the network. Table II lists the details of
each network.

Table III summarizes the comparative results of Ansor,
Bansor1 and Bansor2, which indicate that gradient UCB task
selection and UCB sketch selection can indeed lead to better
schedules. The largest schedule speed up is 1.38× on CPU
3D-Resnet-18 with batch 16. We also observe that Bansor’s

strengths are mainly manifested on harder cases (i.e., those
with high latency) than easier ones. To see this, we plot
the ratio between Bansor’s schedule costs against Ansor’s in
Figure 5. The downward curves suggest that Bansor’s speedup
relative to Ansor seems to improve linearly w.r.t schedule
latency and network complexity. In most cases, Bansor2
yields slightly better results than Bansor1, indicating the task
selection by UCB is worthwhile.

TABLE II: The number of tasks and number of trials used for
evaluation of each DNN.

Network Tasks Trials #Sketch max #Sketch min

3D-ResNet-18 23 23000 (9, 4) (1, 1)
BERT 10 10000 (9, 4) (3, 1)

DCGAN 5 5000 (3, 1) (3, 1)

It is worth noting that in Table II, for the DCGAN on GPU,
all tasks have only one sketch. This renders Bansor1 equivalent
to Ansor, and thus any speedup of Bansor2 should be solely
attributed to the task UCB selection, while small discrepancies
between Ansor and Bansor1 are due to randomness of the
evolutionary search.

While Table III shows the best schedules found by Bansor
and Ansor given the same number of measure trials, an-
other way to demonstrate Bansor’s strength is to report how
much computation is required for Bansor to achieve Ansor’s
best schedule performance for each case. Tables IV list the
measurement trials and search time required respectively for
Bansor to match the performance of Ansor on the network
benchmarks: In 3 among 12 cases, Bansor can match the
performance of Ansor with an order of magnitude less mea-
surement trials. The largest trial savings is 26.52×. These
results further certify the algorithmic superiority of Bansor
over Ansor.

VI. CONCLUSIONS

As pointed out in [4], the TVM framework can be used as a
testbed for new algorithmic innovations from various machine
learning directions. In this work, we have presented a simple
yet powerful algorithmic improvement for Ansor by borrow-
ing ideas from reinforcement learning, and demonstrated the
advantages of the new system on a diverse set of test cases
and two hardware platforms. Despite the superior performance
of Bansor, we identify a few future directions that are worth
exploring for achieving even better results:
• Using a full implementation of Monte Carlo tree search

to replace evolutionary search is an interesting direction
for future study.

• Quantifying uncertainty of cost model. In the current
system, the cost model is trained in an online fashion
and is used to replace hardware execution in search. Thus,
given a schedule, it is desirable that we can quantify to
what extent the cost model predictions can be trusted,
thereby allowing a more preferable use of the cost model
during search.



TABLE III: Network results on CPU and GPU. Boldface
indicates the schedule cost is more than 10% smaller than
Ansor.

CPU
Batch 1 Batch 16

Ansor Bansor1 Bansor2 Ansor Bansor1 Bansor2

DCGAN 6.74 5.74 6.04 86.78 80.91 79.23
BERT 62.83 56.99 56.90 865.45 734.93 697.22
3D-ResNet 141.76 134.05 133.73 2783.98 2025.51 2023.05

GPU
Batch 1 Batch 16

Ansor Bansor1 Bansor2 Ansor Bansor1 Bansor2

DCGAN 0.64 0.65 0.60 5.06 4.99 5.00
BERT 5.81 5.72 5.42 53.38 47.37 46.26
3D-ResNet 10.24 9.22 8.69 135.05 116.52 116.98

Fig. 5: Relative ratio of schedule time costs on CPU and GPU.
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