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The transformation brought by AlphaGo and its successors has led notable AI
researcher to believe that future research in two-player alternate-turn zero-sum
perfect-information games is inconsequential [3]. However, AlphaGo [15], AlphaGo
Zero [17] and AlphaZero [16] are essentially heuristic algorithms without theoretical
guarantee on success. They contain a number of important hyperparameters and
how they affect the overall performance is only meagerly understood. Public re-
implementations such as Leela Zero [12] and OpenELF Go [18] are towards the
investigation of this phenomenon.

The fundamental difference that sets Hex asides from many other classic board
games is its strong mathematical structure [6], which has enabled much research in
Hex being presented in an exact rather than heuristic manner. Some examples are
the proof that there is no draw [11], the identification of dead, dominated and inferior
cells [7, 10], and the computation of connection strategies [1]. The accumulation of
these mathematical knowledge, combined with sophisticated search, has enabled
computer programs that to solve Hex openings in board sizes up to 10×10, whose
state spaces are already far beyond the limit of any simple brutal-force search. For
example, the number of states for 9×9 and 10×10 Hex are respectively 1037 and 1046;
see Table ??.

However, mathematical knowledge accumulation becomes more and more dif-
ficult as it has to invoke more and more complicated reasoning. On the other side,
algorithms that learn with deep neural networks have shown great capacity in acquir-
ing heuristic knowledge from data. These two types of knowledge are fundamentally
different and are arguably complementary: given the seemingly intractable problem,
the mathematical knowledge states what we can at least identify, while the later
represents what we can be guessed at most after seeing a number of noised obser-
vations. Both of them have their merits and limitations. For example, the continual
identification of inferior cells [2, 5, 9, 10] and the development of H-search [1, 8, 13]
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Table 0.1: Status of solved Hex board sizes. For 10×10, only 2 openings are solved. For
other smaller board sizes, all openings have been solved.

Board size status year method computation time

6×6 solved, all 2000 DFS [19] seconds
7×7 solved, all 2003 DFS [5] minutes
8×8 solved, all 2008 DFS [9] hours
9×9 solved, all 2013 parallel FDFPN [14] months

10×10 solved, 2 2013 parallel FDFPN [14] months

since the 2000s have quickly led to feasible computer solutions for board sizes from
6×6 to 10×10. See Table 0.1 for a summarization. However, it is unlikely that 11×11
Hex can be solved if no overwhelmingly larger amount of pruning due to inferior cells
analysis or H-search is introduced, i.e., although the pruning they brought is often
exponential, the state-space complexity inevitably grows at a faster rate which itself
is also exponential 1. The deep neural networks expressed knowledge, although can
be probably correct with the help of look-ahead tree search, does not surely prune
anything before doing search. Yet, guessing guided look-ahead search in a state-space
graph faces another challenge: the solution graph itself could be intractably large
which implies that even an error-free guessing technique is employed, verification
could still be infeasible. Such an observation highlights the use of state-abstraction
method in informed guess-based forward search. In Hex, strategy decomposition
is one technique of this sort. Given the observation that advancement in machine
learning have enabled more and more accurate heuristic guidance, together with
existing exact knowledge computation techniques, we conjecture that a promising
future direction for solving Hex is to search decomposition-based solutions — this is
arguably how human solves Hex positions [20].

In summary, Hex is a game that has interested a number of mathematicians and
computer scientists since its invention; its graph-theoretical, combinatorial, game
theoretic, and artificial intelligence aspects are perpetual incentives for attracting
more research in the future. Despite grand successes, deep learning techniques
have been questioned by the lack of reasoning [4]; as a domain where reasoning is
ubiquitous and of utmost importance, Hex could be a valuable domain for pushing
machine learning research to incorporate reasoning techniques as well.
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